Workshop on Peer Led Team Learning in Computer Science (PLTL in CS)

Susan H. Rodger and Tiffany Yam

Duke University

Indiana University Bloomington, IN January 9, 2009

This work was supported by the National Science Foundation with additional support from Microsoft.

PLTI

Outline of Workshop

- Introduction to Peer Led Team Learning in CS, motivation and results
- PLTL session
- Results From Study
- Student Leader Perspectives
- Learning Styles and Role Playing
- Team Leader Training
- PLTL Book Guidelines

Motivation

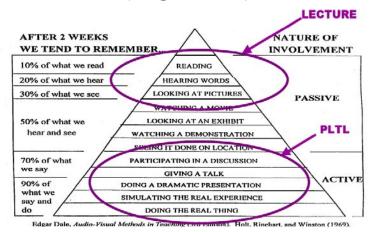
- Taulbee Survey 2006-07 CS BS majors decline
 - 50% drop in enrollment since 2001
 - 11.8% female
 - 5.3% hispanic
 - 3.6% african american
- Many other studies show the low number of interest in CS by females and underrepresented minorities

Possible Goals and Approaches

- Goals
 - Increase number of women and underrepresented groups
 - Increase retention and enthusiasm
- Approaches
 - Active Recruiting of Incoming First-year students
 - Optional/Required of registered students

What is PLTL?

- Related to a course
 - Students solve problems in small groups (4-8 students) weekly in addition to regular class meeting
 - Interesting exercises to be solved as a group
 - Led by trained undergraduate student leaders who facilitate group learning
- Used in Chemistry for about 12 years, www.pltl.org
- Beneficial to both students and student leaders


Why PLTL?

- Factors affecting intellectual development in college
 - Student/faculty interaction outside the classroom
 - Involvement on campus through various forms of community-building activities
 - Involvement with student peer groups
 - "peer group the most potent source of influence on growth and development during the undergraduate years."
 - Astin, A. W., (1993) What Matters in College? Jossey-Bass Publishers, San Francisco. pg. 394-398.

Groups != Discussion Section

- Students helping, learning from other students
- Less authoritative; liberate and empower students
- Promote Active Learning, encourage teamwork
- More fun!

Cone of Learning (Edgar Dale)

Effects on Students

- Better/deeper understanding of material
- Lower drop rates
- Better grades (usually)
- Formation of social groups
- Very high satisfaction

What is ESP?

- Emerging Scholars Program
 - Used in math and science courses
 - Recruits under-represented groups
 - Works in small groups on challenging problems
- Benefits
 - Earn Higher Grades
 - Increases enthusiasm for math and science
- "Calculus and the Community A History of the Emerging Scholars Program" by Rose Asera, 1991, College Board.

Effects on Peer Leaders

- Better understanding of the material
- Increased confidence to continue in CS
- Appreciation for different teaching /learning styles
- Improved leadership skills
- Collegial relationship with faculty

Defining PLTL in CS (also called ESP-PLTL)

- Small groups meet related to a course
 - Not everyone from the course
 - Build friendships to help support you through major
- Active recruiting
- Aim for gender balance
- Undergraduate peer leaders
- Solve challenging problems

Peer-Led Team Learning in CS (PLTL in CS)

- Combines components from PLTL and ESP
- Eight Universities Fall 2005 Spring 2008

Beloit College (WI)

Purdue University (IN)

Duke University (NC)

Rutgers University(NJ)

Georgia Tech (GA)

University of Wisconsin Madison (WI)

Loyola College (MD)

University of Wisconsin Milwaukee (WI)

www.pltlcs.org

Supported by the National Science Foundation collaborative Grants CNS-0420436, 0420343, 0419340, 0420433, 0420358, 0420312, 0420368, 0420337, 0638510 and 0638499 and a donation from Microsoft.

Duke University - "PLTL in CS" version Emerging Scholars Program (DES)

- One year program four courses total
 - First semester
 - Main course: Non-majors course: CPS 4 (Alice) (1 credit)
 - Problem Solving Seminar course: CPS 18S (1/2 credit)
 - Second Semester
 - Main Course: CS 1 course: CPS 6 (Java)
 - Problem Solving Seminar course: CPS 18S (1/2 credit)
 - Active Recruiting (email to targetted groups, accepted student fairs, invite students in main course)
 - Gender balanced
 - Outside Speaker/Field Trip
 - Undergraduate Peer Leaders in Problem Solving Seminar

PLTL in CS variations among 8 universities

- Some focus on non-majors course
- Some focus on CS 1
- Some focus on both (one year)
- Some have just women, most are mixed
- Some include everyone, most are subset
- All use active recruiting and undergraduate peer leaders
- All use problem solving in small groups outside of main class period

CompSci 18S: Problem Solving Seminar

- 2 peer leaders, about 12 students, (1 professor)
- Solve problems in groups of 4
- Either general computer science problems or related to the main course
- Subset of students from main course, those who want the group experience
- Peer leaders trained in workshop, meet weekly

2 Main Courses: Non-majors (Alice) and CS 1 (Java)

- Workshop format
 - Lecture 10-20 minutes
 - Students program rest of class
 - Students work in pairs ("pair programming")
 - Two people, two laptops, consult a lot
 - Assigned seats and pairs, change every 2-3 weeks
- About 35-50 students

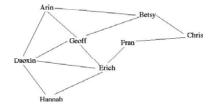
2 Main Courses: Undergraduate role

- About 8-10 undergraduate teaching assistants
- Roles:
 - Attend the "workshop lecture" to assist
 - Meet weekly
 - Grade and hold consulting hours
 - Includes the two peer leaders from the problem solving seminar

Now, Let's Try PLTL!

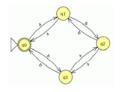
Example of Problem Solving: Be A Robot

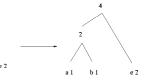
- Group of 4 brain, eyes, 2 hands
- Only brain knows what you are building
- Only eyes can see
- Must work together precisely like a robot



Example of Problem Solving Finding

- Graph of all friends (of everyone in class, at your university)
- Problems
 - Find number of friends of friends of someone
 - Find the center of the graph person with smallest sum of shortest distances




Results from Study

 Susan Horwitz, Susan Rodger, Maureen Biggers, David Binkley, C. Kolin Frantz, Dawn Gundermann, Susanne Hambrusch, Steven Huss-Lederman, Ethan Munson, Barbara Ryder, and Monica Sweat, <u>Using Peer-Led</u> <u>Team Learning to Increase Participation and Success of Under-Represented Groups in Introductory Computer Science</u>, Fourtieth SIGCSE Technical Symposium on Computer Science Education, 2009 (to appear)

Other Examples

- Finite State Machines
- Turing Machines
- Random Numbers
- Compression (Huffman coding)
- Sudoku, Jumble
- L-Systems
- Genomics

Results: Why did women enroll in PLTL in CS?

41 women responded in 2005-06

60.5%	mailed invitation
15.6%	other
12.8%	info during orientation
9.8%	academic advisor recommendation
9.8%	class announcement
4.9%	parent recommendation

Results - Why enroll in main course?

31 female/49 male responses 2005 (select all that apply)

F	M	Reason
71.0%	22.5%	I received an invitation
67.7%	28.6%	To see whether I enjoy CS
29.0%	40.8%	Meets requirement for my major
25.8%	79.6%	I know I am interested in CS
19.4%	18.4%	Programming is useful job-market skill
16.1%	57.1%	I plan to major in CS

Results - Recruiting

- Percentage of women and minorities was higher in ESP-PLTL
- This is over all institutions from 2005-2007.

	ESP	-PLTL	Main Course		
	#	%	#	%	
Female	122	33.4%	673	29.0%	
Minority	43	11.8%	218	9.4%	

Retention Data

Retention Data, All Institutions Combined (2005 - 2007)								
	ESP-PLTL		Non		Total			
			ESP-PLTL		(All Students)			
	#	%	#	%	#	%		
Completed	383	93.2%	2363	88.0%	2746	88.7%		
Dropped	28	6.8%	323	12.0%	351	11.3%		
Total	411	100.0%	2686	100.0%	3097	100.0%		

Final Grade Data, all Institutions 2005-2007

	All		All		Total	
	ESP-PLTL		Non-ESP-PLTL		(All Students)	
	#	%	#	%	#	%
B or better	219	80.2%	1130	68.4%	1349	70.1%
Less than B	54	19.8%	522	31.6%	576	29.9%
Total	273	100.0%	1652	100.0%	1925	100.0%

	ESP-PLTL		Non-	ESP-PLTL	Total	
	Female		Female		(All Females)	
	#	%	#	%	#	%
B or better	70	83.3%	295	70.1%	365	72.3%
Less than B	14	16.7%	126	29.9%	140	27.7%
Total	84	100.0%	421	100.0%	505	100.0%

Advantages for Peer Leaders (telephone interview)

- Common themes emerged
 - Improved Leadership skills
 - Opportunity to try out educator role
 - Reinforcement of understanding CS concepts
 - Increased confidence to continue in field
 - Friendships with students
 - Would recommend experience to others

Web site

 Peer Led Team Learning in CS www.pltlcs.org

• Questions?

Summarizing results

- Active Recruiting increased number of women
 - Email/mailed invitation was most effective
- Retention of PLTL in CS students was higher
- Grades of PLTL in CS students was higher
- Friendships and Bonding occurred with students
- Advantages for Peer Leaders too
- PLTL in CS workshop April 2007 at Duke